Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 1534(1): 118-129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442081

ABSTRACT

Social bonds influence physiology and behavior, which can shape how individuals respond to physical and affective challenges. Coppery titi monkey (Plecturocebus cupreus) offspring form selective bonds with their fathers, making them ideal for investigating how father-daughter bonds influence juveniles' responses to oxytocin (OT) and arginine-vasopressin (AVP) manipulations. We quantified the expression of father-daughter bond-related behaviors in females (n = 10) and gave acute intranasal treatments of saline, low/medium/high OT, low/high AVP, or an OT receptor antagonist (OTA) to subjects prior to a parent preference test. While females spent more time in proximity to their parents than strangers, we found a large degree of individual variation. Females with greater expression of bonding behaviors responded to OT treatments in a dose-dependent manner. Subjects also spent less time in proximity to strangers when treated with High OT (p = 0.003) and Low OT (p = 0.007), but more time when treated with High AVP (p = 0.007), Low AVP (p = 0.009), and OTA (p = 0.001). Findings from the present study suggest that variation in the expression of bond-related behaviors may alter responsiveness to OT and AVP, increasing engagement with unfamiliar social others. This enhanced sociality with strangers may promote the formation of pair bonds with partners.


Subject(s)
Callicebus , Oxytocin , Female , Animals , Humans , Oxytocin/metabolism , Callicebus/metabolism , Vasopressins , Social Behavior , Arginine Vasopressin
2.
Psychoneuroendocrinology ; 157: 106362, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586274

ABSTRACT

Social interactions regulate our behavior and physiology, and strong social bonds can buffer us from stress. Coppery titi monkeys (Plecturocebus cupreus) are socially monogamous South American monkeys that display strong social bonds. Infants form selective bonds with their fathers, making them ideal for studying father-daughter bonds. We established a method for quantifying variability in expression of bond-related behaviors in females (n = 12), and the present study is the second to use this method for explaining titi monkey responses to behavioral tests. We also investigated how manipulations of oxytocin (OT) and vasopressin (AVP) influenced juvenile behavior and physiology. Subjects received acute intranasal treatments of saline, low/medium/high OT, low/high AVP, or OT receptor antagonist (OTA) prior to an acute social separation. General linear mixed-effects model results revealed fathers were significant behavioral and physiological stress buffers for their daughters, as evidenced by fewer distress vocalizations (p < 0.001), less locomotion (p < 0.001), and lower plasma cortisol (p < 0.001) in a social separation paradigm. Females vocalized less if they exhibited greater expression of bond-related behaviors with their fathers as infants (p = 0.01), and this stress-buffering effect remained even when the daughter was separated from the father (p = 0.001). While treatments did not alter behaviors, OTA treatment caused the largest rise in plasma cortisol (p < 0.001), suggesting blockade of OT receptors can inhibit fathers' stress-buffering effects. Remarkably, females with greater expression of father-daughter bond-related behaviors exhibited an overall reduced physiological separation distress response (p = 0.04). Findings from the present study advance current knowledge of the neurobiological mechanisms foundational to female bonds and help inform how social disruptions may differently impact individuals based on expression of bond-related behaviors.


Subject(s)
Callicebus , Pitheciidae , Humans , Animals , Female , Male , Callicebus/metabolism , Social Behavior , Nuclear Family , Hydrocortisone , Pitheciidae/metabolism , Oxytocin , Receptors, Oxytocin/metabolism , Fathers
3.
J Neuroendocrinol ; 35(7): e13304, 2023 07.
Article in English | MEDLINE | ID: mdl-37267441

ABSTRACT

Parenting induces many neurological and behavioral changes that enable parents to rear offspring. Vasopressin plays an important role in this process via its effects on cognition, affect, and neuroplasticity, and in some cases, via interactions with decreased parental androgens. Thus far, the role of these hormones has been primarily studied in rodents. To address this gap, we explored vasopressin receptors and androgens in titi monkeys, a pair-bonding and biparental primate species. In Studies 1 and 2, we used receptor autoradiography to correlate arginine vasopressin receptor 1a (AVPR1a) binding in the hippocampus (Study 1, n = 10) and the rest of the forebrain (Study 2, n = 23) with parental status, parental experience, parity, infant carrying, and pair affiliation. We found that parents exhibited lower AVPR1a binding than non-parents throughout most brain regions assessed, with especially strong effects in the hippocampus (ß = -.61), superior colliculus (ß = -.88), lateral septum (ß = -.35), and medial preoptic area (ß = -.29). The other measures of parental experience also tended to be negatively associated with AVPR1a binding across different brain regions. In Study 3 (n = 44), we compared pre- and postpartum urinary androgen levels in parents and non-parents and found that mothers exhibited a sustained androgen decrease across 3-4 months postpartum (relative to 3 months prepartum; ß ranged from -.72 to -.62 for different comparisons). For males, we found that multiparous fathers exhibited decreased androgen levels at 1-2 weeks postpartum (ß = -.25) and at 3-4 months postpartum (ß = -.40) compared to the prepartum, indicating both immediate and long-term reductions with subsequent paternal experience. Together, the results of this study suggest that decreases in AVPR1a binding and circulating androgens are associated with parental behavior and physiology in titi monkeys.


Subject(s)
Androgens , Receptors, Vasopressin , Male , Humans , Animals , Pregnancy , Female , Receptors, Vasopressin/metabolism , Androgens/metabolism , Callicebus/metabolism , Brain/metabolism , Postpartum Period
4.
Psychoneuroendocrinology ; 106: 259-267, 2019 08.
Article in English | MEDLINE | ID: mdl-31022585

ABSTRACT

Several neurobiological mechanisms are implicated in the formation of selective pair bonds in socially monogamous mammals, however much less is known about the mechanisms that underlie the long-term behavioral maintenance of these bonds. In prairie voles (Microtus ochrogaster), agonistic behavior that contributes to pair bond maintenance are regulated by dopamine activity at D1-like receptors (D1R) within the mesocorticolimbic system. Evidence suggests D1Rs similarly regulate the behavioral components of pair bond maintenance in socially monogamous titi monkeys (Callicebus cupreus); however, evaluation with behavioral pharmacology is necessary to evaluate this hypothesis. In the current study we evaluated the role of D1Rs in behavioral components of pair bond maintenance in captive male titi monkeys (N = 8). We administered two doses of a D1R selective antagonist, SCH23390, (0.1 mg/kg, 0.01 mg/kg) or saline vehicle to male titi monkeys and presented pairs with a simulated intruder monkey via the use of a mirror stimulus. The non-reflective back of the mirror stimulus was used for control sessions. We video recorded responses to the five-minute stimulus presentations and later scored for arousal and agonistic behaviors relevant to mate guarding as well as affiliative behavior between the pair mates. We also conducted a locomotor assessment to evaluate the potential side effect for SCH23390 of impaired locomotion. Finally, we collected blood samples at the end of each session to assay for plasma cortisol responses. We found evidence of locomotor impairment only with the high dose of SCH23390, and therefore analyses were conducted comparing only test sessions where low dose SCH23390 and saline were administered. With saline administration, males displayed more agonistic behavior via back arching and tail lashing as well as restraining their female partners when viewing the mirror compared to the back of the mirror. D1R antagonist treatment attenuated these agonistic behaviors indicative of mate guarding when males viewed the mirror. Results also indicated that this reduction in agonistic behavior occurred without evidence of overall behavioral blunting or generally reduced social interest. Likewise changes in agonistic behavior were not driven by differences in HPA activity across testing sessions. Mate-directed affiliative behavior, including lip smacks and approaches to female partners, were not altered by D1R antagonist treatment. Dyadic social contact was higher with D1R antagonist treatment, but this was due to a reduction in contact termination by the treated males, which was typically followed by an approach or arousal display to the simulated intruder. These results provide further evidence that D1R activity regulates mate guarding behaviors in titi monkeys and suggests that the dopamine system plays a similar role in the agonistic behavioral components of pair bond maintenance behavior in non-human primates and rodents.


Subject(s)
Pair Bond , Receptors, Dopamine D1/metabolism , Animals , Behavior, Animal/drug effects , Benzazepines/pharmacology , Callicebus/metabolism , Dopamine/metabolism , Female , Hydrocortisone/analysis , Hydrocortisone/blood , Male , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...